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Motivation

Why Carbon at extreme conditions?

Astrophysics and Planetary Science: Jovian Planets1 and White
Dwarfs2

Technology: High-pressure research, transparency problem3

Why ab initio simulation?

Practical: Experiments are difficult at extreme conditions and
results are controversial.

Methodology: Empirical/non-abinitio simulations gave misleading
results4.

Electronic Gap dependence with Pressure and Temperature

1W. B. Hubbard, Science 214, 145-9 (1981)
2V. Weidemann et al., Astron.& Astroph. 297(1), 216-222 (1995)
3A. L. Ruoff et al., J. Appl. Phys. 70, 2066 (1991)
4C. J. Wu et al., PRL 89, 135701 (2002)
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Gap of Diamond increases with Pressure

Gap dependence with Pressure at T = 0, Unusual opening of the Gap
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Gap Increase with Pressure is determined by Two Factors

1. sp3 hybridization

Simple Bonding-Antibonding
picture works for diamond5.

Silicon shows opposite
behaviour.

2. Symmetry of Diamond structure

Under Anisotropic pressure
the gap decreases.

BC8 shows a decrease of the
gap.

Thermal disorder produces a
rapid decrease of the gap.

.

5S. Fahy et al., PRB 35, 5856 (1987)
Correa, Bonev, Galli, Falcone Electronic properties of Carbon at extreme conditions from ab initio simulations



Gap Increase with Pressure is determined by Two Factors

1. sp3 hybridization

Simple Bonding-Antibonding
picture works for diamond5.

Silicon shows opposite
behaviour.

2. Symmetry of Diamond structure

Under Anisotropic pressure
the gap decreases.

BC8 shows a decrease of the
gap.

Thermal disorder produces a
rapid decrease of the gap.

.

Diamond, Formation of bands��sp3

Antibonding

Bonding

Band

Band

5S. Fahy et al., PRB 35, 5856 (1987)
Correa, Bonev, Galli, Falcone Electronic properties of Carbon at extreme conditions from ab initio simulations



Gap Increase with Pressure is determined by Two Factors

1. sp3 hybridization

Simple Bonding-Antibonding
picture works for diamond5.

Silicon shows opposite
behaviour.

2. Symmetry of Diamond structure

Under Anisotropic pressure
the gap decreases.

BC8 shows a decrease of the
gap.

Thermal disorder produces a
rapid decrease of the gap.

.

5S. Fahy et al., PRB 35, 5856 (1987)
Correa, Bonev, Galli, Falcone Electronic properties of Carbon at extreme conditions from ab initio simulations



Gap Increase with Pressure is determined by Two Factors

1. sp3 hybridization

Simple Bonding-Antibonding
picture works for diamond5.

Silicon shows opposite
behaviour.

2. Symmetry of Diamond structure

Under Anisotropic pressure
the gap decreases.

BC8 shows a decrease of the
gap.

Thermal disorder produces a
rapid decrease of the gap.

.

5S. Fahy et al., PRB 35, 5856 (1987)
Correa, Bonev, Galli, Falcone Electronic properties of Carbon at extreme conditions from ab initio simulations



Gap Increase with Pressure is determined by Two Factors

1. sp3 hybridization

Simple Bonding-Antibonding
picture works for diamond5.

Silicon shows opposite
behaviour.

2. Symmetry of Diamond structure

Under Anisotropic pressure
the gap decreases.

BC8 shows a decrease of the
gap.

Thermal disorder produces a
rapid decrease of the gap.

.

BC8 structure, stable above 12Mbar
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BC8 Structure, 4-fold coord. but different to Diamond

Stable above 12 Mbar, ∆H method
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BC8 Gap decreases with Pressure
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Gap of Diamond at Finite Temperature: Method

Constant Pressure Molecular Dynamics

64 atoms in a periodic box

Car-Parinello molecular dynamics

Norm conserving pseudo-potential

Set P =∼10Mbar and T = 0 up to 10000K

∼4 picoseconds equilibration time

Density of States

DOS calculated from Snapshots

GGA Energy Gap from DOS.
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Gap of Diamond reduces with Temperature at High P

Gap dependence with Temperature at P = 10 Mbar
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Summary

Energy Gap of Carbon is very sensitive to crystal symmetry.

BC8 Gap decreases with pressure.

Diamond Gap increases with pressure.

but decreases continuously as temperature is raised.

Diamond at High pressure does not become conducting before
melting
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Appendix: Convergence tests

Equation of State at T = 0, size FX
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